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Gap structure of the local field in symmetric Q Ising neural networks
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The time evolution of the local field isymmetric Qsing neural networks is studied for arbitra@: In
particular, the structure of the noise and the appearance of gaps in the probability distribution are discussed.
Results are presented for several valueQaind compared with numerical simulations.
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In a number of papers in the 1990d. [1-10Q] and refer-  varianceA. The latter is a measure for the activity of the
ences thereinthe parallel dynamics of-Ising type neural patterns. Given the configuratioo(t)={o;(t)}, the local
networks has been discussed for several architectures usindield in neuroni equals
probabilistic approach. For the asymmetric extremely diluted
and Igyered architectures this dynamlcs can be'solved exgctly hy(a(t))=h;(t) = z 3, (0ay(b), 1)
and it is known that the local field only contains Gaussian ]
noise. For networks with symmetric connections, however,
things are quite different. Even for extremely diluted ver-with J;; the synaptic coupling. For the SED and the FC ar-
sions of these systems feedback correlations become esséfitectures the couplings are given by the Hebb rule
tial, complicating the dynamics in a nontrivial way.

Only regently, a complgte sglution has been obtained for J§ED:ﬂ 2 grer for i#j, JSEP=0, )
the dynamics of symmetri©-Ising networks at zero tem- " CA b §
perature, taking into account all feedback correlati®&0].
Thereby, it is seen that both for the fully connecté€) and
the symmetric extremely dilute(@BED) architectures, the lo-
cal field contains a discrete and a Gaussian noise part. This
discrete part prevents a closed-form solution of the dynamicgith the c;;=c;;=0,1 chosen to be IIDRV with distribution
but a recursive scheme can be developed in order to calculaR{c;j =x}=(1—C/N) 6, o+ (C/N) 5, ;. Thereby, it is as-
the complete time evolution of the order parameters. sumed thaC<In N. For the SED model the architecture is a

Since the local field is a basic ingredient of the recursivdocal Cayley tree but, in contrast with the diluted asymmetric
scheme, it is interesting by itself to study its probability dis-model, it is no longer directed such that it causes a feedback
tribution. Moreover, once this distribution is known, many from t=2 onwards.
properties of the network, in particular the order parameters At zero temperature all neurons are updated in parallel
themselves, can be calculated. The stability of the retrievaficcording to the rule
phase is also reflected in a gap structure of the distribution. A
better check of the theory can be provided by comparing ai(t+1)=gp(hi(t)),
directly the local field instead of the macroscopic order pa- Q
rameters, with simulations. .

In more detail, we want to see how the initial Gaussian gb(x):gl S B[ b(Sk+ 1+ k) —X] = 6[ b(sk+s¢-1) = X1},
behavior at time zero evolves, especially under the presence (4)
of discrete noise. Next, we also want to find out whether the
specific structure of the architectufEC or SED, the value  with sy=—c0 andsqy,=+%. Heregy(-) is the gain func-
of Q, and the fact whether we are in a retrieval region or nottion andb>0 is the gain parameter of the system.
changes the behavior of the distribution. Finally, numerical In order to measure the retrieval quality one can use the
simulations are performed confirming the analytic study andHamming distance between a stored pattern and the micro-
giving additional insight into the behavior of the local field. scopic state of the network. This introduces the main overlap

Consider a neural network ®f neurons, which can take and the arithmetic mean of the neuron activities
valueso; from a discrete sgt—1=s;<---<sq=+1}. The

atterns to be stored in this network are supposed to be a 1 1
goiljlection of independent and identically distriEEted random  ™(V= g4 EI o), an)=g EI [oi(OT*.

1 .
Ke-ga S &g for i+l J°=0, @

variables(IIDRV), &, w=1,...p, with zero mean and (5)
The key question is then how these quantities evolve in time.
*Email address: desire.bolle@fys.kuleuven.ac.be One finds from Eq(4) using the law of large numbers that in
TEmail address: gmshim@cnu.ac.kr the thermodynamic limit
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) 1, ) correlation matriXxW= (E[ xgXs/]) we arrive at the following
mi(t+1)= 1 (&gnhi(1)),  alt+1)=(gphi(t))) expression forfp, « for the FC model:
(6) -

In the above(-)) denotes the average both over the distribu- fhi(t)(y):J dXtH dxs8(y —M;(t) = VV(t)x)
tion of the embedded patter@gé and the initial configura- =0
tions 0;(0). Theaverage over the latter is hidden in an av- 1 W~ IxT
erage oveh;(t) through Eq(4). We remark that for the SED X ex;{ - ) , (1)
model the thermodynamic limit contains bdfh—o andN Jdet2mw) 2
—oo. Furthermore, all averages have to be taken over the L
treelike structure, and the capacity=p/N has to be re- With X={Xg}=(Xo, ... X2,%). For the symmetric diluted

placed bya = p/C. case this expression simplifies to

In Eq. (6), hy(t) is the main ingredient. Employing a [t/2

]
dxt—2s

probabilistic signal-to-noise ratio analysis it has been showr} (y)= 1 exd — XW T s
that, for a general time step h;(t) is given by[9,10] oY) = | L [de(27W) 2
hi(t)=&'m"(t) + MO,ea(t))+ x(t— L){F[hi(t—1) X (y—&mi(t) —ax(t—1)oi(t— 1)~ Jaa(t)x),
—&mi(t—1) ]+ aoi(t—1)}, 7) (12)
whereF=1 for the FC architecture an=0 for the SED ~ With X=({Xs}) = (X¢—2[u21 » - - - Xi—2,X1). The bracket$t/2]
one. So, the local field at timteconsists out of a discrete part denote the integer part of2.
and a Gaussian distributed part The equilibrium distribution oh;(t) can be obtained by

eliminating the time dependence ()
hi(t) =M;(t)+ MO,V(1)), (8
h,= &m'+ pN(0,ca) + ax no; , (13
where M;(t) consists out of a signal term and a discrete
noise term with »=1/(1— x) for the FC architecture ang=1 for the
SED one. The corresponding updating r(de
Mi(t)=&m*(t) + ax(t—1)oi(t—1)

t—1

[T x(s)

s=t’

t-2 oi=gp(hi+axno), h=&mi+y\M0aa) (19

+F2 a

t'=0

oi(t’) 9

in general admits more than one solution. A Maxwell con-
struction(see, e.g., Ref§9-11]) can be made leading to a
and a recursion relation fo¥(t) can be obtained from Eq. unique solution

(7). Since we do not need it explicitly in the sequel we do not
write it down. The quantityy(t) reads

s=gF). (b 15
o-1

X(t):kzl freolP(Siea TSN (Siea=sds A0 gon that we haves;=s, if D(Sc+Sc_1)+ axns,<h,

<b(s¢+Sc 1) +axnse for B>0 and oy==*1 if *h,
with fyu () the probability density oh{“(t) in the thermody- -,y for 5<0. This unique solution can be used to obtain
namic limit. Since different architectures contain differentfixed-point equations for the main overlap and activiy.
correlations not all terms in these final equations are presenthose equations are equal to those derived from a thermo-
as is apparent through We remark that for the asymmetric dynamic replica-symmetric mean-field theory approach
diluted and the layered feedforward architectuv(t) [12,13. For analog networks@— <) such a Maxwell con-
= gilml(t) so that in these cases the local field consists out oftruction is not necessary because 8d) has only one so-

a signal term plus Gaussian noise ok time stepd6,7]. lution.

For the architectures treated here we still have to deter- Next, we calculate the probability density of the local
mine the probability densityy, ) in Eq. (10). This can be field by plugging these results into Ed-3) to obtain, forget-
done by looking at the form o1, (t) given by Eq.(9). The ting about the site indekand the pattern index 1,
evolution equation tells us that;(t’) can be replaced by

gp(hi(t' —1)) such that the second and third terms\bf(t) f(h)= §: 1 oxd — (h—é&m—axnsy)?

are the sums of step functions of correlated variables. These & m2maa 2aan?

are also correlated through the dynamics with the Gaussian

distributed part ofh;(t). Therefore, the local field can be x{9[5(5k+5k+1)+axy,sk_h]

considered as a transformation of a set of correlated Gauss- 5

ian variables<g, which we choose to normalize. Defining the —0[b(st+sc_1)+axns,—hl}, (16)
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FIG. 1. A comparison of theoretical results and numerical simu- /G- 3- The gap boundaries mas a function of for retrieval
lations with N=6000 for f(h) of a retrieval state in th@=2  (Solid curve and nonretrievaldashed curvestates for theQ=3
system witha=0.13,m,=0.5. Theoreticalsimulation results for ~ SED Systems witi=0.2.
t=0,1,2 are indicated by a dotted cur(grcles, a short-dashed

curve (squarel and a long-dashed curgdiamonds. Simulations We have investigated these pTObapi”ty dis_tributions-nu-
for t=10,20(stars, trianglesare shown and the solid curve presents merically using the corresponding fixed-point equations
the equilibrium distribution. mentioned before, for several values @f and compared

them with those obtained from numerical simulations of the
dynamics for networks oN=6000 neurons. Some typical
results are shown in Figs. 1-4.

In Figs. 1 and 2 the local field distribution for the fully
connectedQ =2 network is shown for a retrieval statex (

meaning that Q—1) gaps occur, respectively, di(s,
+5_1) +ax S 1<h<D(Sc+Sks1) +axnse with width
Ah=2axn/(Q—1). For analog networks no gaps occur.

WhenB§O the effective _gain fUnCti0m15) becomes two- :0_13,m0: 05) just below the critical Capacity and a non-
state Ising-like such that in that case only one gap occurs. retrieval spin-glass statex=0.14,m,=0.2) just above it.
For Q=2 this expressioi16) simplifies to Both the first few time steps and the equilibrium result de-

rived above are compared with numerical simulations. They
are in agreement. For the retrieval state there is, typically, a
small gap in the equilibrium distribution arourd=0. For
small @ the gap is very narrow. Furthermore, in the simula-

(= A axm) p( _(h—ém—axn)®

—F€X
nV2maa

2aan?

0(—h— h— ém+ 2 tions one sees that this gap shows up very quickly. For the
+ ﬂem( - M } nonretrieval state the gap is typically much bigger. Again in
nV2maa 2aan the simulations one quickly sees the gap but it is extremely

(17) difficult numerically to find points touching the zero axis
because of finite size effects.

This result is consistent with the gap in the internal-field e find that the gap width at equilibriund\h, for the

distribution for an infinite range spin glass found by a Bethe-Nonretrieval state as a function qf with b=0.5 scales as

Peierls-Weiss approadi4] (see also Refs[15,16). It is ~Ah~1/(Q—1) and, hence, decreases to zeroQor . This
straightforward to work out a similar formula for bigger val- constant behavior of@—1)Ah attains already for values of

ues ofQ.
Q 06

fih)

FIG. 4. The local field distributiorf(h) of a retrieval state for
FIG. 2. As in Fig. 1, for aQ=2 nonretrieval spin-glass state pattern values+1 in the SED Q=3 system with«=0.6,b

with @=0.14,my=0.2. Further simulations fot=10 (stars, t =0.5,my=0.7. Results fot=0, 1, 2, andx~ are indicated by a
=30 (crossep t=50 (filled circles, andt= 100 (filled squaresare dotted curve, a short-dashed curve, a long-dashed curve, and a solid
shown. curve, respectively.

067101-3



BRIEF REPORTS PHYSICAL REVIEW E 65 067101

Q=20 and is also seen for the retrieval state. These results 0.7) just below the critical capacity. Only the distribution
are insensitive to the structure of the symmetric architecturewith pattern valuest 1 is shown. It is asymmetric and two
In Fig. 3 the gap boundaries imas a function ofo are  gaps are found at equilibrium. For pattern values 0 the dis-
compared for retrieval and non-retrieval states in the SEDribution is symmetric and the gap locations and widths are
Q=3, b=0.2 model. We remark that in this case the spin-the samdgsee Eq.(16)] but their height is different.
glass states do not exist far<0.04[13] so that there is no In conclusion, we have studied the time evolution of the
gap for thesex values. Fora large enough ¢>0.465 for  local field in symmetriaQ-Ising neural networks both in the
retrieval states and>0.252 for spin-glass statethere ex- retrieval and spin-glass regime. We have found a gap struc-
ists one gap only since the effective gain function becomesure in its probability distribution depending on the specific
Ising-like [13]. More gaps with smaller widths are formed architecture and on the value Qf The most important find-
when increasind for both the fully connected and diluted ings are that dilution changes the region of existence of the
models. ForQ—« the gaps disappear. gap but not its width and that the gap becomes typically
Comparing the gaps for the spin-glass states in the FC antiuch bigger when we cross the retrieval transition line into
SED Q=3 models withb=0.5 we find that fora=<0.25 the spin-glass region. These results agree with numerical
there exist no spin-glass states in the SED mptigl and for ~ simulations.
a<0.004 there are none in the FC mofie?]. When both do
exist the gap widths are almost equal. So the dilution has This work has been supported in part by the Fund for
some influence on the existence of the gap but, again, not o8cientific Research, Flanders-Belgium and the Korea Sci-
its width. ence and Engineering Foundation through the SRC program.
Finally, Fig. 4 presents the local field distribution for the The authors are indebted to A. Coolen, G. Jongen, and V.
SED Q=3, b=0.5 model for a retrieval statex=0.6,m,  Zagrebnov for constructive discussions.
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