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Gap structure of the local field in symmetric Q Ising neural networks
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The time evolution of the local field insymmetric Q-Ising neural networks is studied for arbitraryQ. In
particular, the structure of the noise and the appearance of gaps in the probability distribution are discussed.
Results are presented for several values ofQ and compared with numerical simulations.
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In a number of papers in the 1990s~cf. @1–10# and refer-
ences therein! the parallel dynamics ofQ-Ising type neural
networks has been discussed for several architectures us
probabilistic approach. For the asymmetric extremely dilu
and layered architectures this dynamics can be solved ex
and it is known that the local field only contains Gauss
noise. For networks with symmetric connections, howev
things are quite different. Even for extremely diluted ve
sions of these systems feedback correlations become e
tial, complicating the dynamics in a nontrivial way.

Only recently, a complete solution has been obtained
the dynamics of symmetricQ-Ising networks at zero tem
perature, taking into account all feedback correlations@9,10#.
Thereby, it is seen that both for the fully connected~FC! and
the symmetric extremely diluted~SED! architectures, the lo-
cal field contains a discrete and a Gaussian noise part.
discrete part prevents a closed-form solution of the dynam
but a recursive scheme can be developed in order to calc
the complete time evolution of the order parameters.

Since the local field is a basic ingredient of the recurs
scheme, it is interesting by itself to study its probability d
tribution. Moreover, once this distribution is known, man
properties of the network, in particular the order parame
themselves, can be calculated. The stability of the retrie
phase is also reflected in a gap structure of the distributio
better check of the theory can be provided by compar
directly the local field instead of the macroscopic order
rameters, with simulations.

In more detail, we want to see how the initial Gauss
behavior at time zero evolves, especially under the prese
of discrete noise. Next, we also want to find out whether
specific structure of the architecture~FC or SED!, the value
of Q, and the fact whether we are in a retrieval region or n
changes the behavior of the distribution. Finally, numeri
simulations are performed confirming the analytic study a
giving additional insight into the behavior of the local fiel

Consider a neural network ofN neurons, which can take
valuess i from a discrete set$215s1,•••,sQ511%. The
p patterns to be stored in this network are supposed to
collection of independent and identically distributed rand
variables~IIDRV !, j i

m , m51, . . . ,p, with zero mean and
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varianceA. The latter is a measure for the activity of th
patterns. Given the configurations(t)[$s i(t)%, the local
field in neuroni equals

hi„s~ t !…[hi~ t !5(
j

Ji j ~ t !s j~ t !, ~1!

with Ji j the synaptic coupling. For the SED and the FC
chitectures the couplings are given by the Hebb rule

Ji j
SED5

ci j

CA (
m

j i
mj j

m for iÞ j , Jii
SED50, ~2!

Ji j
FC5

1

NA (
m

j i
mj j

m for iÞ j , Jii
FC50, ~3!

with the ci j 5cji 50,1 chosen to be IIDRV with distribution
Pr$ci j 5x%5(12C/N)dx,01(C/N)dx,1 . Thereby, it is as-
sumed thatC! ln N. For the SED model the architecture is
local Cayley tree but, in contrast with the diluted asymmet
model, it is no longer directed such that it causes a feedb
from t>2 onwards.

At zero temperature all neurons are updated in para
according to the rule

s i~ t11!5gb„hi~ t !…,

gb~x![(
k51

Q

sk$u@b~sk111sk!2x#2u@b~sk1sk21!2x#%,

~4!

with s0[2` andsQ11[1`. Heregb(•) is the gain func-
tion andb.0 is the gain parameter of the system.

In order to measure the retrieval quality one can use
Hamming distance between a stored pattern and the mi
scopic state of the network. This introduces the main over
and the arithmetic mean of the neuron activities

mN
m~ t !5

1

NA (
i

j i
ms i~ t !, aN~ t !5

1

N (
i

@s i~ t !#2.

~5!

The key question is then how these quantities evolve in tim
One finds from Eq.~4! using the law of large numbers that i
the thermodynamic limit
©2002 The American Physical Society01-1
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m1~ t11!5
1

A
^̂ j i

1gb„hi~ t !…&&, a~ t11!5 ^̂ gb
2
„hi~ t !…&&.

~6!

In the abovê^•&& denotes the average both over the distrib
tion of the embedded patternsj i

m and the initial configura-
tions s i(0). Theaverage over the latter is hidden in an a
erage overhi(t) through Eq.~4!. We remark that for the SED
model the thermodynamic limit contains bothC→` andN
→`. Furthermore, all averages have to be taken over
treelike structure, and the capacitya5p/N has to be re-
placed bya5p/C.

In Eq. ~6!, hi(t) is the main ingredient. Employing
probabilistic signal-to-noise ratio analysis it has been sho
that, for a general time stept, hi(t) is given by@9,10#

hi~ t !5j i
1m1~ t !1N„0,aa~ t !…1x~ t21!$F@hi~ t21!

2j i
1m1~ t21!#1as i~ t21!%, ~7!

whereF51 for the FC architecture andF50 for the SED
one. So, the local field at timet consists out of a discrete pa
and a Gaussian distributed part

hi~ t !5Mi~ t !1N„0,V~ t !…, ~8!

where Mi(t) consists out of a signal term and a discre
noise term

Mi~ t !5j i
1m1~ t !1ax~ t21!s i~ t21!

1F (
t850

t22

aF )
s5t8

t21

x~s!Gs i~ t8! ~9!

and a recursion relation forV(t) can be obtained from Eq
~7!. Since we do not need it explicitly in the sequel we do n
write it down. The quantityx(t) reads

x~ t !5 (
k51

Q21

f h
i
m(t)@b~sk111sk!#~sk112sk!, ~10!

with f h
i
m(t) the probability density ofhi

m(t) in the thermody-

namic limit. Since different architectures contain differe
correlations not all terms in these final equations are pres
as is apparent throughF. We remark that for the asymmetri
diluted and the layered feedforward architectureMi(t)
5j i

1m1(t) so that in these cases the local field consists ou
a signal term plus Gaussian noise forall time steps@6,7#.

For the architectures treated here we still have to de
mine the probability densityf hi (t)

in Eq. ~10!. This can be

done by looking at the form ofMi(t) given by Eq.~9!. The
evolution equation tells us thats i(t8) can be replaced by
gb„hi(t821)… such that the second and third terms ofMi(t)
are the sums of step functions of correlated variables. Th
are also correlated through the dynamics with the Gaus
distributed part ofhi(t). Therefore, the local field can b
considered as a transformation of a set of correlated Ga
ian variablesxs , which we choose to normalize. Defining th
06710
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correlation matrixW5(E@xsxs8#) we arrive at the following
expression forf hi (t)

for the FC model:

f hi (t)
~y!5E dxt)

s50

t22

dxsd„y2Mi~ t !2AV~ t !xt…

3
1

Adet~2pW!
expS 2

xW21xT

2 D , ~11!

with x5$xs%5(x0 , . . . ,xt22 ,xt). For the symmetric diluted
case this expression simplifies to

f hi (t)
~y!5E )

s50

[ t/2]

dxt22s

1

Adet~2pW!
expS 2

xW21xT

2 D d

3„y2j i
1m1~ t !2ax~ t21!s i~ t21!2Aaa~ t !xt…,

~12!

with x5($xs%)5(xt22[t/2] , . . . ,xt22 ,xt). The brackets@ t/2#
denote the integer part oft/2.

The equilibrium distribution ofhi(t) can be obtained by
eliminating the time dependence in~7!

hi5j i
1m11hN~0,aa!1axhs i , ~13!

with h51/(12x) for the FC architecture andh51 for the
SED one. The corresponding updating rule~4!

s i5gb~ h̃i1axhs i !, h̃i5j i
1mi

11hN~0,aa! ~14!

in general admits more than one solution. A Maxwell co
struction~see, e.g., Refs.@9–11#! can be made leading to
unique solution

s i5gb̃~hĩ !, b̃5S b2
ahx

2 D ~15!

such that we haves i5sk if b̃(sk1sk21)1axhsk,hi

,b̃(sk1sk11)1axhsk for b̃.0 and s i561 if 6hi

.ahx for b̃,0. This unique solution can be used to obta
fixed-point equations for the main overlap and activity~6!.
Those equations are equal to those derived from a ther
dynamic replica-symmetric mean-field theory approa
@12,13#. For analog networks (Q→`) such a Maxwell con-
struction is not necessary because Eq.~14! has only one so-
lution.

Next, we calculate the probability density of the loc
field by plugging these results into Eq.~13! to obtain, forget-
ting about the site indexi and the pattern index 1,

f ~h!5 (
k51

Q
1

hA2paa
expS 2

~h2jm2axhsk!
2

2aah2 D
3$u@ b̃~sk1sk11!1axhsk2h#

2u@ b̃~sk1sk21!1axhsk2h#%, ~16!
1-2



r.

s.

ld
e

l-

u-
ns

he
l

y

n-

e-
ey

y, a

la-
the
in
ely
is

f

u

ts

e

solid

BRIEF REPORTS PHYSICAL REVIEW E 65 067101
meaning that (Q21) gaps occur, respectively, atb̃(sk

1sk21)1axhsk21,h,b̃(sk1sk11)1axhsk with width
Dh52axh/(Q21). For analog networks no gaps occu
When b̃<0 the effective gain function~15! becomes two-
state Ising-like such that in that case only one gap occur

For Q52 this expression~16! simplifies to

f ~h!5
u~h2axh!

hA2paa
expS 2

~h2jm2axh!2

2aah2 D
1

u~2h2axh!

hA2paa
expS 2

~h2jm1axh!2

2aah2 D .

~17!

This result is consistent with the gap in the internal-fie
distribution for an infinite range spin glass found by a Beth
Peierls-Weiss approach@14# ~see also Refs.@15,16#!. It is
straightforward to work out a similar formula for bigger va
ues ofQ.

FIG. 1. A comparison of theoretical results and numerical sim
lations with N56000 for f (h) of a retrieval state in theQ52
system witha50.13,m050.5. Theoretical~simulation! results for
t50,1,2 are indicated by a dotted curve~circles!, a short-dashed
curve ~squares!, and a long-dashed curve~diamonds!. Simulations
for t510,20~stars, triangles! are shown and the solid curve presen
the equilibrium distribution.

FIG. 2. As in Fig. 1, for aQ52 nonretrieval spin-glass stat
with a50.14,m050.2. Further simulations fort510 ~stars!, t
530 ~crosses!, t550 ~filled circles!, andt5100 ~filled squares! are
shown.
06710
-

We have investigated these probability distributions n
merically using the corresponding fixed-point equatio
mentioned before, for several values ofQ and compared
them with those obtained from numerical simulations of t
dynamics for networks ofN56000 neurons. Some typica
results are shown in Figs. 1–4.

In Figs. 1 and 2 the local field distribution for the full
connectedQ52 network is shown for a retrieval state (a
50.13,m050.5) just below the critical capacity and a no
retrieval spin-glass state (a50.14,m050.2) just above it.
Both the first few time steps and the equilibrium result d
rived above are compared with numerical simulations. Th
are in agreement. For the retrieval state there is, typicall
small gap in the equilibrium distribution aroundh50. For
small a the gap is very narrow. Furthermore, in the simu
tions one sees that this gap shows up very quickly. For
nonretrieval state the gap is typically much bigger. Again
the simulations one quickly sees the gap but it is extrem
difficult numerically to find points touching the zero ax
because of finite size effects.

We find that the gap width at equilibrium,Dh, for the
nonretrieval state as a function ofQ with b50.5 scales as
Dh;1/(Q21) and, hence, decreases to zero forQ→`. This
constant behavior of (Q21)Dh attains already for values o

- FIG. 3. The gap boundaries inh as a function ofa for retrieval
~solid curve! and nonretrieval~dashed curve! states for theQ53
SED systems withb50.2.

FIG. 4. The local field distributionf (h) of a retrieval state for
pattern values11 in the SED Q53 system with a50.6, b
50.5, m050.7. Results fort50, 1, 2, and` are indicated by a
dotted curve, a short-dashed curve, a long-dashed curve, and a
curve, respectively.
1-3
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Q>20 and is also seen for the retrieval state. These res
are insensitive to the structure of the symmetric architect

In Fig. 3 the gap boundaries inh as a function ofa are
compared for retrieval and non-retrieval states in the S
Q53, b50.2 model. We remark that in this case the sp
glass states do not exist fora<0.04 @13# so that there is no
gap for thesea values. Fora large enough (a.0.465 for
retrieval states anda.0.252 for spin-glass states! there ex-
ists one gap only since the effective gain function becom
Ising-like @13#. More gaps with smaller widths are forme
when increasingQ for both the fully connected and dilute
models. ForQ→` the gaps disappear.

Comparing the gaps for the spin-glass states in the FC
SED Q53 models withb50.5 we find that fora<0.25
there exist no spin-glass states in the SED model@13# and for
a<0.004 there are none in the FC model@12#. When both do
exist the gap widths are almost equal. So the dilution
some influence on the existence of the gap but, again, no
its width.

Finally, Fig. 4 presents the local field distribution for th
SED Q53, b50.5 model for a retrieval state (a50.6, m0
t.

t-

06710
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50.7) just below the critical capacity. Only the distributio
with pattern values11 is shown. It is asymmetric and tw
gaps are found at equilibrium. For pattern values 0 the d
tribution is symmetric and the gap locations and widths
the same@see Eq.~16!# but their height is different.

In conclusion, we have studied the time evolution of t
local field in symmetricQ-Ising neural networks both in the
retrieval and spin-glass regime. We have found a gap st
ture in its probability distribution depending on the speci
architecture and on the value ofQ. The most important find-
ings are that dilution changes the region of existence of
gap but not its width and that the gap becomes typica
much bigger when we cross the retrieval transition line in
the spin-glass region. These results agree with numer
simulations.
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